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An investigation was conducted in the Langley  8-foot  transonic  tun- 
ne l  on a submerged inlet with a divergent-walled  approach ramp t o  deter- 
mine flow phenomena, pressure  recovery, and external forces, and t o  
provide  correlation with available data obtained from inlets of similar 
design. The two side-mounted inlets were positioned at the 25-percent- 
body s t a t ion  of a basic body 8 inches i n  diameter and of f lneness  ratio 8. 
The  minimum inlet mea was 16 percent of the f r o n t a l  area of the model. 
Data were obtained  over a Mach number range from 0.60 t o  1.09 f o r  angles 
of a t tack  from Oo t o  10.60, and the mass-flow r a t i o  was varied from the 

L. maximum t h a t  would enter  the  i n l e t  down t o  about 0.20. 

Results of t he  tests showed that, f o r  mass-flow r a t i o s  between 0.40 
and 0.80 at an angle of a t tack  of 00 the maximum total-pressure  ra t io  
a f t e r  2.4/1  diffusion  varied from about 98 percent at a free-stream Mach 
number M, of 0.60 t o  about 93 percent at M, w 1.09. A t  8n angle of 
a t tack  of 10.6O, the total-pressure  ra t io  was markedly reduced, about 
14  percent below the  free-stream  value at M, = 0.95; severe flow osc i l -  
l a t ions  accompanied the decrease. L i f t  and pitching moments of the 
basic body were altered very l i t t l e  by the addition of the  submerged 
i n l e t  and  changes i n  lift and pitching moment wi th  mass-flow r a t i o  were 
small. The external  drag at mximum mass-flow r a t io s  was approximately 
equal t o  that of the  basic body. Variation of external drag with mass- 
flow r a t i o  was not   substant ia l ly   different  from that of a forward-located 
underslung  scoop at s M h r  test  conditions. 
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. 
The use of side air i n l e t s   f o r  fuselage-mounted  engine installa- 

tions  generally  permits a short  Internal  ducting  system t o  the engine 
and allows a maximum of internal  volume f o r  equipment. An investigation 
program to  evaluate  the  pressure-recovery and force  character is t ics  of 
various types of fuselage air inlets and t o   e s t ab l i sh  the e f fec ts  of 
several  geometric  variables has been  undertaken i n   t h e  Langley  8-foot 
transonic  tunnel. The first configuration  tested, a forward-located 
underslung  scoop, was reported and compared t o  a basic body of revolu- 
t ion  in  reference 1. 

The present  study was made t o  determine the  performance at t ran-  
sonic  speeds and angles of a t tack  of a submerged inlet configuration 
similar t o  those  reported  in  references 2 and 3 .  The In le t s  were 
Ins ta l led  on a finenese-ratio-8 body of revolution at the  25-percent 
s t a t ion   o r  midway between the nose and the  maximum body diameter.  This 
locat ion was se lec ted   to  xgnimize the boundary-layer and Mach number 
e f f ec t s  on the  approach rqp and a lso  from considerations of the  prob- 
able w i n g  and engine locations.  

The sum of t h e  areas f o r  the  two inlets,  defihed by the minimum 
duct  area  just  Inside  the inlet, was about 16 percent of the  body fron- 
tal area.  Design details followed  closely the recommendations f o r  sub- 
merged inlets  outl ined  in  reference 3 .  Measurements Included normal 
force, axial force,   pitching moment, pressure  recovery, mass flow, 
in te rna l  drag, and surface  pressures on the  several  inlet components. 
Data were obtained  for Mach numbers from 0.60 t o  1.09, for  angles of 
a t tack  up t o  10.6O, and fo r  mass-flow r a t io s  from the maximum t h a t  would 
pass t h e  i n l e t   t o  about 0.20 ( throt t le   c losed) .  

SYMBOLS 

external-drag  coeff  lclent , 
(E*+PgB_ F + cFn)cos a + - Gn s i n  a 

s$F 

internal-f orce  coefficient , 
S q n l  a 3  (F) 

r 

I 
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external- l i f t   coeff ic ient ,  

external-pitching-moment coefficient  taken  about maximum- 
diameter stat ion, G&$D 

point mass-flow coeff ic ient ,  pv/poV0 

point  inter&-force  coefficient, 2c - 2) + p3 - Po 
cos a s, 

duct area 

base  area 

maximum body diameter 

fuselage maximum cross  -sect  ional  area 

internal   force  (posi t ive when i n  a thrusting  direction, 
negative when in a drag direct ion) ,  

strain-gage-measured axial   force,  normal force,  and pitching 
moment 

to ta l   p ressure  

mass-flow-weighted average to ta l   p ressure  

inlet height 

model length 

Mach  number 

mass-flow ra te ,  pAV 

mass-flow ra t io ,  m/poVoA1 

stat ic   pressure 

.I. 
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P static-pressure  coefficient , P - Po 
s, 

q dynamic pressure, 1 pV2 2 

R 

r 

V 

X 

05 

Y 

P 

Subscripts : 

0 

L 

1 

body maximm radius 

radius 

velocity 

longitudinal  distance from model nose 

angle of a t tack  

r a t i o  of specific  heats,  1.4 f o r  air 

mass air density 

f r e e  stream 

minimum duct  area, 2.10 inches from plane of  i n l e t  

diffuser  measurement s t a t  ion 

model ex i t  

model base 

l i p  

loca l  

APPAFWPUS AND MODELS 

Wind tunnel.- The Langley 8-foot transonic  tunnel has a dodecagonal 
s lo t ted  t e s t  section and permitted continuous t e s t ing  up t o  a Mach number 
of 1.09 w i t h  the present model. Details of the test  section are given 
in  reference 4, and the aerodynamic properties of the air stream are 
reported  in  reference 5. 
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0 
A sketch of the model with  the submerged inlet is shown mounted in 

the  tunnel  in figure l (a )  and photographic views of the  model are given 
in f igure l ( b )  . 

Submerged-inlet  model.- The submerged inlets were adapted t o  a 
modified  transonic body of revolution of f ineness   ra t io  11, which when 
cut   off   to   provide  an  exi t   for   internal  flow had a ffneness   ra t io  of 8. 
(ref. 1). In   o rde r   t o   f ac i l i t a t e   t e s t ing  and t o  insure  that   force data 
would be f r e e  from mechanical  interference,  separate similar afterbodies 
were used to   ob ta in   force  and pressure  data.  Figure 2 shows the  general  
arrangement of t he   i n l e t  forebody mounted on the  force and pressure 
zfterbodies which were described in reference 1. 

The combined i n l e t  area, defined by the  plane of the  l i p  leading 
edge, was about 19 percent  of  the  frontal area; whereas, the  minimum 
inlet   area  totaled 0.163~. The  minimum i n l e t  areas f o r  the right- and 
left-hand  ducts  (looking  forward) as measured from templates were found 
t o  be 4.20 square  inches and 4.00 square  inches,  respectively. The  ramp 
center   l ine was obtained  by  laying  out from the  basic  body surface  the 
longitudinal  coordinates which had been measured from a f la t  surface  in 
reference 3. The transverse ramp dimensions were laid out along circular 
arcs  concentric w i t h  the  model center   l ine,  and the side walls were 
formed as  radial l i n e s  through the  body center and the  extremities of 
the   c i rcu lar  arcs. The aspect   ra t io  of the in l e t  a t  the  plane of the  
l i p  leading edge was about 3.5. Details of the W e t - l i p  shape  and 
approach ramp are shown i n  figure 3 and body and ramp coordinates  are 
given i n  table I. The  minimum duct  area which occurred 0.72 inch 
downstream of the inlet plane was held constant  for a distance of about 
1.4 inches  (1.2h) and then  increased as shown in   f igure  3(a) t o  about 
2.4 times t h e  minimum duct are8 at the  d i f fuser  measurement s ta t ion .  

I 

Instrumentation.-  Instrumentation of the  force and pressure  after-  
bodies was described  in  reference 1. Surface  pressure measurements on 
the  forebody were made on the  top, both right- and left-hand ramps, and 
on the  outside and inside of the  r ight-hand  inlet   l ip  (table 11). S t a t i c  
pressure measurements on the  tunnel-wall  panel were made on a l i n e  30' 
from the  top  center   l ine  (panel  ll, ref. 5) t o  determine  the  position 
and strength of  model-induced disturbances. 

All pressure data were recorded  photographically from multiple-tube 
manometers f i l l e d  with  tetrabromoethane.  Force data were manually 
recorded from sensi t ive d i a l  potentiometers and tunnel. tota1 tempera- 
tu res  were obtained from recording  millavoltmeters. Flow visualization 
i n  the   v ic in i ty  of t h e  i n l e t  was obtained  in  the form of schlieren 
photographs. 
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In  order  to  obtain  schlieren photographs of the shock pat terns  on 
t h e  ramp surfaces, t h e  model was ro ta ted   for  all t h e   t e s t s  from Its 
normal a t t i t ude  by turning t h e  sting-support system goo counterclockwise 
(facing  upstream)  (see  fig. 1); angle-of-attack changes were consequently 
made i n  a  horizontal  plane.  For all the tests, the model nose was 
located 42 inches downstream of the s l o t   o r i g i n   t o  minimize the   e f fec ts  
on t h e  flow  into the inlet of a small gradient  in stream Mach  number 
above M, * 1.02 forward of the 50-inch s ta t ion   ( see   re f .  5) .  

Force and pressure  data were obtained  for Mach numbers from about 
0.60 t o  1.09, the maximum obtainable with this model, and for  angles of 
a t tack  of 00, 4 . 3 O ,  7.30r and 10.60. In order t o  avoid  possible 
boundary-layer hysteresis  effects,  the  mass-flow r a t i o  u a s  varied from 
the  maximum which would pass   the   fn le t   to   the  minimum of about 0.20 
(thrott le  closed).   Figure 4 shows a comparison of the maximum obtain- 
able mass-flow r a t i o  at Oo and 10.6~ angle of at tack.  

Point  values of the mass-flow and internal-force  coefficients were 
calculated as described  in  reference 1 and average  values of t o t a l -  
pressure  ratios  presented  herein were weighted  according t o  the loca l  
mass  flow. The system  mass-flow r a t i o  determined from measuremeni.3 at 
t h e  e x i t  is believed t o  be accurate  to  within kO.01; whereas the indi- 
vidual  duct mass-flow r a t io s   a t   t he  end of the  diffuser  are  considered 
t o  be within 50.02. Estimated accuracy of other measurements is a s  
follows : 

p/Ko and H/H, . . . . . . . . . . . . . . . . . . . . . . . . . .  20.002 

M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -*0.006 
M, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  +0.01 

CL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50.01 
c, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  io.02 

CD e . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . *  f o e 0 1  

a, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  f O . l  

Included in  the  estimated  errors of point mass-flow r a t i o  and 
external  drag are those  result ing from leakage in to   the   s t ing  fairing, 
which were evaluated from s t a t i c   t e s t s .  Second-order e f fec ts  arising 
fram assuming that cos a = 1 in   the   def in i t ion  of Fn and in   the  com- 
putation of % are  considered  negligible. No corrections for wind- 

tunnel w a l l  e f fec ts  have been made. Model-induced wall-measured d is -  
turbances  for the present model  were  campared t o  those of reference 1 

n . 
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c for   both the  so l id  nose  and  scoop  nose. These disturbances were found 
t o  be i n  about the same loca t ion   re la t ive   to  the nose  and t o  be of  about 
the same magnitude at corresponding angles of attack and Mach numbers. 
It is believed,  therefore, that comparisons of t h e  data of the present 
tests with those of reference 1 should  afford a. reasonably  accurate  indi- 
cation of the drag, lift, and pitching-moment  Lncrements. The Reynolds 
number range for   these tests i s  shown i n  figure 5. 

RESULTS AND DISCUSSION 

The results of the investigation of the submerged in l e t   i n s t a l l a -  
t i o n  are divided so as t o  present external- and internal-flow  character- 
i s t i c s  as indicated by surface pressures and internal-pressure-recovery 
data; and force  character is t ics  as indicated by normal-force,  axial- 
force,  and pitching-moment data. Comparisons for   both  force and pressure- 
recovery data are made with several  types of inlet configurations. 

Pressure  Characteristics 

Pressure  distributions on the  top  center  line.-  Representative 
pressure  distributions along the   top of the body at the  lateral plane 
of symmetry are shown in  figure 6 f o r  a = Oo, Also shown are  the  curves 
of the  pressure  distributions on the basic body ( re f .  1). The principal 
e f fec t  of i n s t a l l i ng  the i n l e t  was t o  increase the  pressures  in t h e  
v i c in i ty  of the inlet and at the d e l  e x i t .  Beginning a t  M, = 0 . 9  
f o r  the high-mass-flow conditions, the high static-pressure f ie ld  of the 
inlet was f e l t  as a strong  recompression near the inlet s ta t ion  a long 
the  top of t he  model. A t  M, = 1.00 and greater, t h i s  rapid  pressure 
rise apparently  occurred  through a normal shock which is bel ieved  to  be 
associated  with the shock  formation  originating and extending  outward 
from the ramp surfaces. Data taken at angles of a t tack  up t o  10.6' 
showed e f f ec t s  of similar flow behavior. The e f f ec t s  of these  abrupt 
recompressions on external drag wlll be discussed in a l a te r   sec t ion .  
Pressure  increases  caused by t h e  exhaust flow and f e l t  primarily  over 
the  last 10 percent of the  afterbody  yielded  reductions  in the afterbody 
pressure  drag  coefficient. A typical  reduction i n  t h e  pressure drag 
coefficient  associated with increases in mass-flaw r a t i o  was found t o  
be  about 0.01 at M, = 0 . 9  from integrated values of surface pressures. 
A similar reduction of 0.01 in  the  afterbody pressure drag coeff ic ient  
was shown f o r  the underslung scoop of reference 1 f o r  similar t e s t  
conditions. 

- 

It 

Pressure  distributions on ramps.- The variat ion of static-pressure 
r a t i o  on both right- and left-hand ramg surfaces at the center   l ine  as 



a functfon  of mass-flow r a t i o  is presented in   f i gu res  7, 8, 9, and 10 
for  Oo, 4 . 3 O ,  7 . 3 O ,  and 10.6~ angle  of attack, respectively.  Schlieren 
photographs of the ramp flaw are  included  in the figures. 

Figure 7 s h m  tha t  the  pressure f ield of the inlet, x/L = 0.25, 
affected the ramp flow as far forward as x/L 0.12 (about 7 i n l e t  
heights) at the  lower Mach numbers, and even a t  M, 1.09, where super- 
sonic  velocit ies  existed on the  remps, the flow began to meet inlet con- 
d i t   ions  as far forward as x/L w 0.17. Forward of x/L w 0.12, however, 
the  s ta t ic   pressures  were of about the same magnitude as those of the 
basic body, ( re f .  1, f i g .  26) and were essent ia l ly  independent of mass- 
flow  changes. The similar i ty  of flow conditions  into the two ducts even 
at the  low-mass-flow conditions is shown by a comparison of the  pressure 
dis t r ibut ions 8nd the  schlieren photographs; t h e  slight d iss imi la r i t i es  
shown are believed t o  be associated w i t h  differences  in the  individual 
duct mass -f low rat 10s. 

A t  Oo angle of a t tack and for the  maximum mass-flow ratios,   sonic 
ve loc i t ies  were obtained ahead of the inlet at Mach numbers greater  than 
about 0 .* and the resul t ing shock  formation is shown i n  the  schlieren 
photograph at l$, = 0.95. Inasmuch as the  pressure rise across these 
shocks well exceeded the pressure  rise  required for. boundary-layer  sepa- 
ra t ion  on a f lat  plate   in   reference 6 ,  a localized  region of separated 
flow on the  ramp may have accompanied the  appearance of these  shocks. 
Reattachment of any separation  could have occurred in  the  region of t he  
strong  favorable  pressure  gradient  just ahead of the effect ive minimum 
area and the net effect  would have been a general  thickening of the 
boundary layer and a small reduction  in the choking or maxirmun mass-flow 
r a t i o  shown i n  figure 4 t o  have occurred at M, w 0.95. An attempt was 
made to   cor re la te   the   pos i t ion  of the shock wave  on the ramps with the 
bow wave of a nose in l e t  (NACA 1-40-400, ref. 7) &ere  the Mach number 
on the  ramps of the submerged in l e t  corresponded t o  the free-stream Mach 
number of the nose inlet; the  location of the  shocks  agreed t o  within 
+O.O08L. 

Operation at lower mass-flow r a t io s  reduced the  intensi ty  of the  
ramp shock by forcing it forward into a region of lower Mach nmber. 
Figure  7(c) shows that although the peak loca l  Mach  number ahead of the 
in l e t  was greater  than 1.00, the ramp shock became too we& t o  be photo- 
graphed  by the  schlieren system. A similar behavior of the ramp shock 
is shown at M, = 0.g5 and M, = 1.00. A t  the minimum mass-flow 
r a t io s ,  t he  strong  adverse  pressure  gradient  just ahead of the inlet 
apparently gave rise t o  a large  increase  in boundary-layer  thickness  or 
possibly  separation from the ramp surfaces; this is indicated  at  the  low 
mass-flow r a t io s  by the  f la t ten ing  of the  curve at x/L 2 0.24 and by 
the  values of the  diffuser   s ta t ic   pressures  s h a m  t o  be below those found 
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for  higher mass-flaw r a t i o s  (i.e., f ig .   7 (b) ,  compare m/% = 0.20 with 
m/rx+, = 0.61).  Increasing the  Mach nLmiber appeared t o  aggravate t h i s  
condition and caused it t o  become evident a t  higher mass-flow r a t i o s  
( see   f ig .   7 (e) ,  m/m, = 0.39). 

As the angle of a t tack  was increased (see figs. 8 t o  lo), the 
ingested flow became increasingly disturbed a t  a l l  mass-flow r a t i o s  by 
the   vort ices  induced  by spillage  over the ramp side walls. Up t o  an 
angle of a t tack  of 7.3O, the increased  intensity of the vortex and pos- 
sible  separatfon induced at the lower sfde w a l l s  caused gradual reduc- 
t ions  in the   s t a t i c -p res sye   r a t io s  just forward and downstream of t he  
in l e t .  Operation at 10.6 , however, caused  abrupt  decreases in the  
static pressures  throughout  the  ducts  indicating  extensive  regions of 
nonuniform flow.  Furthennore,  unsyllnnetrical flow conditions between 
the two W e t s  are evidenced  by the larger var ia t ions   in  the  duct static- 
pressure  ra t ios  (see f i g .  IO(b) ). 

Static-pressure dis t r ibut ions on inlet lip.- Static-pressure dis- 
t r ibu t ions  on t h e  inside of the right-hand inlet l i p  (fig. =(a)) at 
a = Oo show that f o r  a l l  Mach numbers a small supersonic  region  existed 
near the l i p  leading edge f o r  the high mass-flow ra t io s .  The maximum 
local  indicated Mach  number decreased from about 1.2 a t  M, = 0.9 t o  
about 0.6 as the mass-flow r a t i o  was reduced from choke t o  about 0.70. 
Below 4% = 0.70, however, the maximum l oca l  Mach number first decreased 
by about 0.10 and then  increased by about t he  same amount as t h e  minimum 
mass flow was approached. This effect is  an indication of t he  flow 
asymmetry of the ingested  air  at the low mass-flow ra t io s .  

- 

A study of figure l l ( b )   f o r  a = 10.6~ and addi t ional  data at  4.3O 
and 7.3O  showed that the effect of angle of attack was t o  increase the 
loca l  Mach  number around the imide of t h e   l i p  a t  the  cen te r   l i ne   fo r  
all test  conditions; a further indication of this is given  in a later 
figure of point-mass-flow-ratio and impact-ratio  contours in the  diffuser. 

Pressure  dis t r ibut iom along the outside of t h e   l i p  at t h e  center 
l i n e  (see fig.  12)  show that at the low mass-flow r a t i o s  a narrow region 
of high superstreem  velocities  occurred around the leading edge for Mach 
numbers of 0.60 and 0.80; these  veloci t ies  became supersonic at M, = 0.80. 
A t  all higher Mach nmibers,  important  increases i n  the length of t h i s  
region  occurred. A t  M, = 0.95 and greater,  a weak compression  followed 
by a region of increasing  velocit ies is shown t o  have occurred  just  back 
of the l ip   l ead ing  edge. It is believed that this disturbance is similar 
t o  the w e a k  shock  formations  found on the  leading edges of supersonic 

conditions under which the weak shocks formed on the supersonic   a i r foi ls  
m a i r fo i l s   opera t ing  under lifting conditions.  Reference 8 states that the  
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tested appeared t o  be the  existence of supersonic  velocities in  the 
v i c in i ty  of the leading edge and a highly  localized  separated  region 
or iginat ing at the  leading edge and extending  only a short  distance 
rearward. Operation at the high mass-flow ra t io s  reduced the effect ive 
angle of a t tack  of t h e   l i p  and thereby  prevented the formation of t h i s  
disturbance. A t  M, = 0.95 and 1.00, and f o r  mass-flow ra t io s  from 
about 0.20 t o  0.60, recompression t o  the body s ta t ic   pressures  rearward 
of the  lip  apparently  occurred  through a system of sma l l  shacks. A t  
higher mass-flow rat ios ,   the   f igure  indicates  that normal shocks may 
have  been present. A t  an angle of a t tack  of 10.6~ ( f ig .  l3), the maxi- 
mum l o c a l  Mach  number a t  the l i p   c e n t e r  line was reduced by the effec- 
t i v e  sweep of the l i p  leading edge and resul ted  in  a much  more uniform 
pressure  distribution. However, it may be noted that at angles of 
a t tack,  minimum pressures were not  necessarily measured at the  center 
l ine   bu t  may have occurred  elsewhere  along the l i p  span.  Large cross 
flow6  around the  body surface  substantially reduced the s ta t ic   pressure 
l eve l s  rearward of t h e  l i p  (x/L > 0.30) and a rapid rise from t h e   l i p  to 
the  body surface  pressures  such  as  found a t  Oo was not  required. 

Internal-pressure  recovery.- The variat ion of the mass-flow-weighted 
total-pressure  recovery at t h e  diffuser  measurement s t a t i o n   f o r  each  duct 
as a function of t he  system W s - f l O W  r a t i o  at the  tes t   angles  of a t tack 
are  presented  in figure 14; corresponding diffuser s ta t ic-pressure  ra t ios  
are given i n  figure 15. The curves have  been faired  through  the system 
mass-flow-weighted total-pressure  recovery  instead of the individual  duct 
values . Large  deviations from the man curve at lox mass -f low rat io6 
resulted  primarily from unstable  flow  conditions  discussed later. Point- 
mass-flow-ratio and impact-pressure-ratio  contours at the diffuser  meas- 
urement s t a t ion   a r e  shown in   f igure  16. 

A t  Oo angle of attack,  the maximum average  total-pressure  recovery 
occurred at a mass-flow r a t i o  of from 0.60 t o  0.70 and wa8 approximately 
0.98Ho at a Mach  number of 0.60; a gradual decrease  occurred with 
increasing Mach number t o  about 0.96% at M, = 1.00. A t  the  highest 
t e s t  Mach nwnbers the maximum pressure  recovery  decreased t o  O.ggo. 
These additional  losses at supersonlc  speeds  are  understandable and a r i s e  
from several  primary  sources:  the l o s s  through  the bow shock  ahead of 
the model nose, the  loss through  the shock on the  ramp surface, boundary- 
layer  growth, and the generally  increased  level of viscous  losses due t o  
the  higher  local  velocities  throughout the  system aa the  stream Mach 
number increased. The 2- t o  3-percent  decrease i n  recovery below the 
maximum at low mass-flow ra t io s  was accompanied by some flow dissymmetry 
between the two ducts. A general  thickening of the boundary layer o r  
possible  separation from the  ramp surface  together w i t h  the  change from 
t rans l a t iona l   t o   ro t a t iona l  energy which resulted from the generation of 
vort ices  from the ramp side w a l l s  would readi ly  account f o r  these 
decreases. 

. 
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c A t  high mass-flow ra t io s ,  the total-pressure  recovery  decreased 
about 3 percent below the maximum value as the  choking mass-flow r a t i o  
was approached. The abrupt  decrease  in  recovery a t  the maximum mass- 

ahead of the mlnirmrm area s ta t ion .  
- f low  ra t io  i s  charac te r i s t ic  of an inlet Kfthout  extensive  separation 

A t  Mach numbers below 0.9, operation at angles of a t t ack  up t o  
7.3O showed gr6dUall.y increasing  losses  associated wi th  either boundary- 
layer  separation from the lower ramp wal l  or energy losses frcan the 
strong ramp vortices.  Righer Mach numbers, however, magnified t h e  
e f f ec t s  of angle-of-attack change and the total-pressure  recovery 
decreased  rapidly. A t  10.6~ angle of attack,  extensive  losses  associ-  
ated with the  flow Over the lower ramp side wall caused  large  reductions 
i n  recovery a t  all Mach numbers and mass-flow ra t ios .   For  example, at 
Mo = 0.95 and m/m, = 0.80, increasing the angle of a t tack  from Oo t o  
7 . 3 O  caused a 5.5-percent  reduction in   to ta l -pressure   ra t io ,  whereas 811 
additional 3 . 3 O  (a = 10.60) caused a 4.5 percent  greater loss over t ha t  
at 7.3O. In   addi t ion  to   these large losses   in   to ta l -pressure   ra t io  at 
10.6O, f low  osci l la t ions  in  the two ducts were present at all but  the 
highest mass-flow ra t ios .  

Figure 15 shows that, f o r  u = Oo and i n  the  high-mass-flow range, 
the  static-pressure  recovery  decreased wlth increasing mass-flow ra t io ;  

toward a reversal  in the  slope  of the curve.  According to   re fe rence  9, 
t h i s  behavior of the  static-pressure-recovery  curves is  an  indication 
of in te rna l - f low  ins tab i l i ty   in  a t d n - d u c t  system which is primarily a 
function of the static-pressure-recovery  characterist ics at the  juncture 
of the  two ducts. Flow oscillations  could  occur when the model is oper- 
a t ing  through a range of msss-flow r a t io s  f o r  which the  s ta t fc-pressure 
recovery  increases w i t h  increasing mass-flow r a t i o .  A t  a = Oo, f i g -  
we 15  indicates t h a t  Condi t ions  for   instabi l i ty   exis ted at mass-flow 
ra t io s  below 0.50 a t  all Mach numbers. From the  static-pressure  recov- 
eries,   operation a t  angles of a t tack  up t o  7.3' apparently improved the 
range of flow s tab i l i ty ,   bu t  as the angle of a t tack  was increased from 
7.3O t o  10.60 unstable  conditions were possible  over a wide range of 
mass-flow ra t io s  at Mach numbers greater  than 0.95. A t  M, * 1.09, vis- 
ual observations made during  the tests ver i f ied  the  unstable  conditions 
indicated by figure 15 at mass-flow r a t io s  as high as 0.70, and it was 
estimated t h a t  t h e  frequency of the osc i l l a t ion  was about 4 cycles  per 
minute. The presence of high-frequency  oscillations  could  not be 
observed  because of the   re la t ive ly  slow response of t h e  system. 

- whereas, at 10.6O, the  high Mach  number conditions  indicate a tendency 

Internal  performance and pressure-recovery  characteristics at 
Mo w 1.09 are also indicated by the  point-mass-flow-ratio and fmpact- 
pressure-ratio  contours  in figure 16. A t  Oo angle .of a t tack  and low 
mass-flow ra t ios ,  t h e  figure shows tha t  i n  this unstable  flow range 
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most of the  air  was carr ied by the  left-hand inlet. A t  a mass-flow 
r a t i o  of 0.95 most of the air flow  passed the d i f fuser  measurement s ta -  
t i o n   c l o s e   t o  the top and bottom surfaces of the  lateral-support   strut  
fairing. Separation from t h e  lower ramp side wall a t  a = 10.6~ caused 
most of the flow t o  be always carried by the upper  halves of the ducts; 
increasing the  mass-flow r a t i o  improved the symmetry of the flow. The. 
impact-pressure-ratio  contours  for Oo show about the  same character is t ics  
of flow  behavior as shown by the point-mass-flow-ratio  contours. A t  
10.6O, separation on the  ramp is reflected by the  5 t o  10 percent lower 
impact-pressure r a t io s  shown f o r  the bottom halves of the ducts. 

Aerodynamic Forces 

L i f t  and pitching moment .- External lift and external  pitching 
moment as used  herein  consist of all of the   e f fec ts  of pressure and v i s -  
cous forces on t h e  external body surface and the entering  stream  tube 
surface  except  those  forces which are common t o  both  surfaces.  External 
l i f t  was calculated by the  addition  of  the  vertical  components of the 
thrust force6  and  base  pressures to   the  s t ra in-gage data. The external 
pitching moment, taken  about  the maxirmun-body-diameter s ta t ion,  was com- 
puted  from the measured value on the assuqt ion that the exhaust flow 
acted  in  an axial direct ion through t h e  pitching-moment center. It may 
be noted that the  numerical  values  obtained from the  foregoing d e f i n i -  
t i o n  of external  pitching moment do not   direct ly   ref lect  the pressure 
changes on the  washed surface ahead of the  in l e t .  Included i n  f igures 17 
and 18 of lift and  pitching moment are the  values  obtained  for  the  basic 
body w i t h  t a i l  cone at corresponding Mach numbers ( re f .  I). Figure 17 
shows that the addition of the  inlet t o  the ba8iC body increased t h e  
lift coefficient  throughout the Mach  number apd angle-of-attack  range 
and t h a t  the  ingestion of air yielded stFll further increases  in lift. 
The pitching-moment character is t ics   ( f ig .  IS) are seen t o  have been 
about  the same 88  those found for   the   bas ic  body through  both  the Mach 
number and angle-of-attack range. No important  changes in   pi tching 
moment occurred wi th  changes in mass flow and calculatione  indicated a 
rearward s h i f t  in the pitching-moment center with increases  in mass-flow 
rat io .  

External dr&q.- "he def ini t ion of external drag as applied t o   t h e  
submerged in l e t  is analagous t o  that of the lift and pitching moment i n  
that it consists of the sum of all the  pressure and  viscous  forces on 
the external body surface  and  the  entering  stream-tube  surface,  except 
those  forces which a re  common t o  both  surfaces.  External-drag  coeffi- 
cients  along  with the internal-  and base-force  coefficients have been 
p lo t ted   in  figure 19 as a function of  mass-flow r a t i o  through the t e s t  
Mach  number and  angle-of-attack  range. It is s h m  in   t he  f i e e  that 
the  minimum drag  occurred at the maximum mass-flow ra t io ;  the magnitude 
of the minimum drag value is  approximately  equal t o  that of the  basic 

. 
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c body of reference 1. Therefore,  shocks on the ramps, t h e  top and the 
sides of the body, and on the  l ip   outs ide  occurr ing at these high mass- 
flow  ratios are believed t o  have caused no important  changes i n  the  
external  drag.  Reductions i n  mass-flow ra t io ,  however, resu l ted   in  
substantial   increases in the value  of  the  external  drag. These increases 
are associated wi th  steeper  adverse pressure gradients on the l i p s  and 
the larger  viscous  effects at the reduced  mass-flow ra t ios .  A more 
detailed  discussion of the  source of this   adverse  character is t ic  is 
given in reference 1. The measured drag f o r  similar tes t   condi t ions 
corresponded c l o s e l y   t o  the  values  obtained  for the underslung  scoop of 
reference 1 and are substant ia l ly  greater at reduced mass-flow ra t io s  
than  those  reported  for  the open-nose inlets of reference 7. It is 
presumed, therefore, t h a t  the  pressure rise on the  ramps occurring with 
reductions in mass-flow ratio  yielded  increases in the thrust  forces on 
the ramp side W s .  These thrust forces thus ac ted   t o  oppose the  drag 
forces  associated w i t h  decelersting the  ingested air and  reduced the 
l i p  suction  forces  required  for a momentum balance. 

The variat ion of external drag is shown i n  figure 19 t o  be mall 
up t o  7.3O angle of attack. The large  increase  occurring between 7.3O 
and 10.6~~ 50-percent  increase Over f o r  OO at M, = 0.9 and 
m/m, = 0.80, is indicative of t h e  large  cross-flow-separation  effects 
on the  afterbody. However, at 10.6~ the  external-drag values at moderate 
mass-flow r a t io s  showed  no large increases above those found f o r  t he  
basic body under similar test  conditions. 

c% 

- 

Performance Comparisons 

Total-pressure  recovery.- The internal-total-pressure  recovery as 
a function of the mass-flow rat i o   f o r  the submerged inlet is compared 
in   f igure  20 with the total-pressure  recovery of the underslung scoop 
of  reference 1, a submerged scoop of reference 10 which was similar t o  
the  present model, and the  NACA 1-40-200 nose inlet of reference 7 f o r  
Oo and 10.60 angle of attack. 

It is shown i n  figure 20 that f o r  6' angle of a t tack  and f o r  a Mach 
number of 0.80, the maximum total-pressure  recovery of the  suhmerged 
inlet was about 2 percent below tha t  of the  underslung scoop, w-hich had 
a recovery above 0.g7Ho throughout a mass-flow range from m/m, = 0.20 
t o  1.00. A t  high Mach numbers, however, the  submerged-inlet  installa- 
t i o n  caused  reductions i n  recovery of about 4 percent below those   for  
the  underslung scoop,  and  furthermore,  resulted  in  lower  choking  values 
of  mass-flow ra t io   than   for   the   o ther  two types of inlets shown. A t  an 

e f f ec t s  and the nose inlet incurred only small total-pressure losses 
* angle of a t tack  of 10.6~~ the underslung  scoop  sustained no adverse 



from separation at the lower inner-lip fairing. The submerged-inlet 
Ins ta l la t ion ,  however, in add i t ion   t o  showing reductions in t o t a l -  
pressure  recovery of about 20 percent below that achieved by the under- 
slung scoop snd lower choking  mass-flow ra t ios ,  was subject at the high 
Mach numbers to   ser ious  f low  osci l la t ions at mass-flow ra t io s  as high 
as 0.70. The improved recovery a t  the low mass-flow r a t io s  of the  pres- 
ent  model campared t o  that of t h e  submerged in l e t  of reference 10 may 
have resulted fram the difference in the incl inat ion of the  ramp walls 
and t h e  relative location of the inlets. Similar improvements in t o t a l -  
pressure  recovery at m/q, % 0.80 were sham i n  reference ll wherein 
the ramp side xalls were inclined outward r e l a t i v e   t o   t h e  ramp surface. 
Canting the inlets downward several  degree6 may yield increases in   pres-  
sure recovery for high angles of a t tack st the  cost  of reductions at the 
high-speed  condition. If these reductions  could  be  tolerated, a range 
of  moderate pressure  recoveries  could  be extended t o  high angles of 
a t tack.  It may be concluded, however, that the pressure-recovery  per- 
formance  of t h i s  adaptation of the submerged i n l e t  at 10.6~ angle of 
a t tack  is grea t ly   in fer ior  t o  that of the  underslung scoop, and even at 
Oo angle of attack, it cannot  achieve the  performance realized by the  
other two types of inlet configurations  without  additional flow controls. 

L i f t  and pitching moments.- The ef fec t  of ins ta l l ing   the  submerged 
i n l e t  on a body of revolution is compared i n  figure 21  t o  the  underslung 
scoop ( re f .  1) i n  terms of lift and pitching-moment coefficients at 
Mo = 0.95 and m/mo = 0.80. It is seen i n  the figure that the addition 
of the submerged i n l e t   t o  the basic body resul ted  in  an increase in lift 
coefficient of about 0.05 throughout the angle-of  -attack range whereas 
the  Iff% coefficient of the underslung scoop is seen t o  be about  the 
same as t h a t  of the basic body at the lower angles of a t tack  and approxi- 
mately  equal t o  that of the  submerged i n l e t  a t  loo. This 0.05 increment 
i n  lift coefficient based on f ron ta l  area would be regarded as insignif- 
icant when appl ied   to  a real airplane;  for  instance,  it would amount t o  
about O.W3 when based on the  area of a typ ica l  wing adapted t o  t h i s  
body. The symmetrically  located submerged inlets show pract ical ly   the 
same value of pitching-moment coefficient as found f o r  the basic body at 
all angles of attack. As would be  expected,  the  underslung  scoop, 
located below the body center line, shows a nose-down decrement i n  
pitching moment of about  0.2 when compared t o   t h e  bask body through the 
angle-of-attack  range. This decrement in pitching-mament coefficient 
would be about only  0.01 when r e fe r r ed   t o   t he  aforementioned wing-body 
comb inat  ion. 

E x t e r n a l  drq.- A comparison has been made ( f ig .  22) of the varia- 
t i o n  of external drag as  a function of mass-fluw r a t i o  at M, = 0.80 
of all the  available  external drag data of similar submerged i n l e t s  
obtained  in wind tunnels  (see refs. 3 and 12 t o  14) . Widely diverse 
test  techniques and model configurations were used f o r  these tests. 
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e Because  such differences  existed, t he  external-drag  values of all the 
models were adjusted t o  correspond t o   t h e  same values at a mass-flow 
r a t i o  of about 1 .OO and the  data are therefore shown as an increment of 
external drag due t o  a reduction  in mass-flow ra t io .  The agreement is 
generally good and the trend shown agrees Kith that obtained from momen- 
tum considerations of the flow 8s  discussed i n  reference 1. 

The ef fec t  on externa l  d r a g  of the  addition of the submerged inlet 
t o   t h e   b a s i c  body with t a i l  cone is  shown in f igure 23 at  Oo and 10.6~ 
angle of a t t ack   fo r  m/% = 0.80. Also included i n  the figure is the 
external drag data f o r  the underslung scoop. It is seen that the  exter- 
nal drag of t h e  submerged scoop as well as that of the underslung  scoop 
at both Oo and 10.60 angle of a t tack  is approximately equal t o  that of 
t h e  basic body throughout  the Mach number range. Also, no important 
changes in  the  drag-rise Mach number are shown t o  have resulted from t h e  
in s t a l l a t ion  of either inlet. It was shown in reference I that up t o  
M, = 1.1 the underslung  scoop was at least as good dragwise at high 
mass-flow r a t i o s  as the  NACA 1-series nose inlets of comparable inlet 
area. Furthermore, it appears tha t  f o r  these test  conditions, at least, 
large geometric  differences  (i.e.,   lip shape and inlet location) have 
resulted i n  only  minor  changes i n  external drag. 

- CONCLUDING REMARKS 

- An investigation in the Langley  8-foot transonic tunnel of a 
divergent-walled submerged inlet tested through a Mach  number range from 
0.60 t o  1 .Og and angles of at tack up t o  10.6' yielded  the following 
result s : 

1. A t  Oo angle of a t tack,   the  maximLrm total-pressure  recovery after 
2.4/1 diffusion  occurred at a mass-flow r a t i o  m/n+, of about 0.60 and 

was 98 percent a t  a free-stream Mach number M, of 0.60 but  decreased 
t o  about 93 percent at M, 1 .Og. 

2. A t  10.6~ angle of attack,  extensfve  total  pressure  losses  asso- 
c ia ted with the flow over  the  lower ramp side w a l l s  occurred at all Mach 
numbers and were accompanied by severe flow osci l la t ions;  at M, = 0.95 
and m/m, = 0.80 these losses  were about 14 percent of the  free-stream 
value. 

3. The addition of the submerged inlet t o  the basic body was shown . t o  have resulted in only minor changes i n  the lift and  pitching-moment 
coeff ic ients .  



4. The external drag at high mass-flow ra t ios  was approximately 
equal t o  that of the  basic body through the Mach  number and angle-&- 
a t tack  range. 

5. A comparison of the  submerged scoop with a forward-located 
underslung scoop indicated that large gecrmetric chmges such as l i p  
shape and inlet location resulted in  only minor  changes in external 
drag as a function of mass-flow ra t io .  

6 .  A conrparison of the  pressure-recovery  characteristics of t h e  
submerged inlet with  those of an underslung  scoop and a nose in le t  indi- 
cated that the performance of t h i s  adaptation of the divergent-walled 
submerged inlet was grea t ly   in fer ior  at high angles of attack; even at 
Oo t h i s  submerged inlet did not rea l ize  the pressure-recovery  perform- 
ance  achieved by the other two types of inlet configurations. 

. 

Langley  Aeronautical  Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley Field, Va  . 
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FUSELAGE COORDINAlXS 

x, in. 

0 
,320 
.480 
.800 

1.600 
3.200 
4.800 
6.400 
9.600 

12.800 
16.000 
19.200 
22.400 
25.600 
28.800 
32.000 
37 -600 
43.200 
48.800 
54.400 
60.600 
64.000 

rf, in. 

0 
.222 
.286 
. 4 l l  
693 

1.157 
1.549 
1.892 
2.489 
2.966 
3 326 
3 591 
3 0776 
3.901 
3.978 
4.000 
3.965 
3.863 
3.688 
3 -419 
3 -003 
2.600 

L.E. radius = 0.048 

RAMP COORDINATES 

x, in. 

3.280 

6 -179 
7.810 
9.450 

11.087 
12.725 
14.362 

4.130 
4.540 

16 .ooo 

1.181 
1.368 
1.444 
1.634 
1.753 
1.858 
1.927 
1 =949 
1.942 
1.917 

1.146 
1.352 
1.380 

... 
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TABLF: I1 

MEAswiED LOCATIONS aF SURFACE ORIFICES 

NACA RM L53C13 

Top center 
1 ine t 
0.02 
4.01 
8.02 
12.00 
16  .oo 
19-98 
23 9 9 3  

28.00 
30.50 
33 -25 
34.75 
36.26 
38.01 
39  -76 
41.14 
44.62 
46.25 
48.14 
50.01 
52 .02 
54.00 
55.90 
a57 77 
a60. 01 
63.52 

x, In. 

Ramp center   l ine 

R i g h t  

2.02 
4.00 
6.01 
8 .OO 
9-00 
9-99 11.00 
11-99 
13.00 
14.00 
15.00 
16 .oo 
18.00 
22.02 
26.01 

Left 

2 .oo 
3.99 
5.99 
7-99 
9.00 
10.00 
11.01 
12.01 

a13.00 
14.01 
15.01 
16.01 
18.00 
e22.00 
26.01 

8Defective  during  entire  test. 

T 
~ ~ _ _  

Lip  center  l ine 

Out s ide 

16.00 
16.24 

%6.73 
16.98 

17 0 %  

16.49 

17.48 

18.95 
20.42 
22 39 
24.35 
25 - 99 
28.00 
30 .oo 

Inside 

16 .oo 
16.25 
16.49 

16 .g8 
16.74 

- = =  

1 
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(a) Sketch showing model rotated 90' from t e s t  attitude. 

Figme 1 .- General arrangement of inlet model mounted in the Langley a f o o t  
transonic tunuel. 
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(b) Photographs of model in tunnel. 

Figure 1.- Concluded. - 
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(a) Section through pressure dterbcdy. 

Figure 2.- Mcdel details. 

.. 

I -  
X43.20" 



. .. 

x:0.02" X=IZ#' K=2400" X.32.00" 
I I 

. . .  . . . . . . . . . . 

X.6350" 
I 

! &-MAIN SUPPORT -..-.PRESSURE RECOVERY RAKES I 

1 '  
I "I ' DRAG BEAM '.THROTTLE STING FAIRING 

LIFT 8 MOMENT BEAMS DRIVE MOTOR YJPPORT STRUT 

FOREBODY - AFTERBOOY BOUNDARY LAYER 

1- MAX, BODY DAM. (PROVIDED FOR LATER TEST) 
CONTROL WCT EXIT 

. .. . . .  

X=li.OO" x=24.00~ X =  3200" 

(b) Cutaway of d e l  on force afterbody. 

Figure 2.- Concluded. 
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LIP REFERENCE LINE 
u, PL' 7 

DESIGN 

X=16.00' WERW DUCTING VARIATION 

(a) M e t  and l ip .  

Figure 3.-  Detafls of the submergeti inlet. 
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(b) Photogsaph of the apprmch raw. 

Figure 3 .- Concluded. 
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Figure 4.- Comparison of calculated and measured maxhmm obtainable mass- 
flow ra t io s .  
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Figure 5.- Reynolds number variation per foot l ineal  dimension in the 
W e y  €!-foot transonic t-1. 
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Figure 6.- Camparison of static-pressure ratios along the top center 
line of the  submerged  inlet and basic b d y  at the maximum mass-flow 
ratios. a = 0'. (Flagged sy-nibols for a mass-flow ratio of about 0.3. ) 
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(a) M, = 0.9'75. 

Figure 7.- Continued. 



(e)  M, = 1.00. 

Figure 7 .- Continued. L-77966 
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(f) Mo = 1.02. 

Figure 7 .  - Continued. 
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(g) M, x 1.04. 

Figure 7 .- Continued. 
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Figure 7.- Concluded. L-17963 

.c i 



. 

(a) M, = 0.60. 

Figure 8.- Variation of s t a t i c  pressure on both right- and left-hand 
rarqp center lines. a x 4.3O. 
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Figure 8.- Concluded. 
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Figure 9.- Continued. 

" 
L-79120 



44 - NACA RM L53Cl-3 

Longitudinal  station,^ /L 

m/q=O.9l -0.77 rnb.0.22 

Longitudinal statim,x/L 

( c )  M ,  = 1.00. =is57 
L-79181 Figure 9.- Continued. - 
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(a) M, = 0.60. . 
Figure 10.- Variation of s t a t i c  pressure along rsmp center l ine .  a a 10.6~. 
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( c )  M, = 1.00. 

Figure 10 .- Continued. - 



. 

NACA RM L53C13 - 49 

(d) M, x 1.09. 

Figure 10 .- Concluded. L-19184 - 
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Figure 11.- Static-pressure  distributions on inside of inlet l i p .  
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Figure 12.- Pressure distribution on exterior of l i p  along bcdy center 
line. a = OD. 
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Figure 1-3.- Pressure distribution on exter io r  of l i p  along body center 
line. u B 10.6 . 
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Figure 14.- Total-pressure-ratio characteristics of the submerged inlet 
at end of the difmer. Flagged symbols indicate left duct. 
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Figure 15.- Variation of the average Rtatic-pressure  ratio at the end 
of the d i f m e r  for four t e s t  angles of attack. Flagged symbols 
indicate left duct. 
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Figure 15.- Concluded. 
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(a) a = 0'. 

Figure 16.- bss-flow-ratio and Impact-presme-ratio contours 
after 2.4/1 diffusion. x 1.09. 
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(b) a X 10.6~. 

Figure 16 .- Concluded 
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Figure 18.- Variation of external  pitching moment with mass-flow ra t io  
far several angles o f  attack. 
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Figure 19.- Variation of dragwise forces with mass-flow ratio for 
several  angles of attack. 
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Figure 20.- Cornpaxison of total-pressure  recovery for the submrged 
inlet with an underslung scoop and a nose inlet. a = 0'. (Flagged 
symbols for a w 10.6'. 
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" Basic body with tail cone (reference I )  

Ffgure 21.- Comparisons of external lift and pitching mment of the 
submerged inlet with an underslung scoop and a basic body at 
M, = 0.95 and = 0.80. 
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Figure 22.- Comgarison of external-drag increment as a function of 

mass-flow ra t io  for several. submerged  inlets. M, 0.80. 
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